Explainable AI: Enhancing Transparency in Complex Machine Learning Models

Main Article Content

Prof. Love Kumar

Abstract

As machine learning models become more complex, the need for explainable AI (XAI) grows. This paper explores techniques for making AI models more transparent and interpretable, focusing on methods such as LIME and SHAP. By applying these techniques to real-world case studies, we demonstrate how XAI can build trust in AI systems and ensure compliance with regulatory standards.

Downloads

Download data is not yet available.

Article Details

How to Cite
Explainable AI: Enhancing Transparency in Complex Machine Learning Models. (2023). Research-Gate Journal, 9(9). https://research-gate.in/index.php/Rgj/article/view/32
Section
Articles

How to Cite

Explainable AI: Enhancing Transparency in Complex Machine Learning Models. (2023). Research-Gate Journal, 9(9). https://research-gate.in/index.php/Rgj/article/view/32

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. https://doi.org/10.48550/arXiv.2005.14165

Chollet, F. (2017). Deep learning. MIT Press.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. https://doi.org/10.1109/CVPR.2016.90

Nadella, G. S., Gonaygunta, H., Meduri, K., & Satish, S. (2023). Adversarial Attacks on Deep Neural Network: Developing Robust Models Against Evasion Technique. Transactions on Latest Trends in Artificial Intelligence, 4(4)

Meduri, K., Nadella, G. S., Gonaygunta, H., & Meduri, S. S. (2023). Developing a Fog Computing-based AI Framework for Real-time Traffic Management and Optimization. International Journal of Sustainable Development in Computing Science, 5(4), 1-24.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. https://doi.org/10.48550/arXiv.1503.02531

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1412.6980

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Li, Y., & Zhou, H. (2020). A survey on deep learning in medical image analysis. Medical Image Analysis, 64, 101766. https://doi.org/10.1016/j.media.2020.101766

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), 4765-4774. https://doi.org/10.5555/3295222.3295230

Gonaygunta, H., Meduri, S. S., Podicheti, S., & Nadella, G. S. (2023). The Impact of Virtual Reality on Social Interaction and Relationship via Statistical Analysis. International Journal of Machine Learning for Sustainable Development, 5(2), 1-20.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533. https://doi.org/10.1038/nature14236

Rajpurkar, P., Irvin, J., Zhu, K., K_classifier, K., & Nguyen, D. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. Proceedings of the 30th Conference on Neural Information Processing Systems (NeurIPS), 1-11. https://doi.org/10.48550/arXiv.1711.05225

Most read articles by the same author(s)

1 2 3 4 5 6 > >>